accelerate
distributed PyTorch training launcher
TLDR
Launch a training script with default configuration
SYNOPSIS
accelerate command [options] [script] [scriptargs_]
DESCRIPTION
accelerate is a Hugging Face library that enables PyTorch code to run on any distributed configuration with minimal code changes. It handles the complexity of distributed training across multiple GPUs, TPUs, and machines while keeping your training code simple.
The tool abstracts away the boilerplate needed for mixed precision training, gradient accumulation, and multi-device parallelism. It automatically detects available hardware and configures the training environment appropriately.
PARAMETERS
config
Run the configuration wizard to set up your environmentlaunch
Launch a training script with the configured settings--num_processes n
Total number of processes to launch--gpu_ids ids
Comma-separated GPU IDs to use--mixed_precision type
Enable mixed precision: no, fp16, bf16--num_machines n
Number of machines for distributed training--machine_rank n
Rank of the current machine (0-indexed)--main_process_ip ip
IP address of the main machine--main_process_port port
Port for the main machine (default: 29500)--use_deepspeed
Enable DeepSpeed for training--use_fsdp
Enable Fully Sharded Data Paralleltest
Test your accelerate configurationenv
Print environment information
CONFIGURATION
Running accelerate config creates a YAML configuration file at ~/.cache/huggingface/accelerate/default_config.yaml. This file stores settings for compute environment type, distributed training backend, number of processes, mixed precision mode, and DeepSpeed/FSDP options. The configuration can also be specified per-project by placing an accelerate_config.yaml in the project directory or by passing --config_file to the launch command.
CAVEATS
Requires PyTorch to be installed. Configuration should match your actual hardware; mismatches can cause silent failures or crashes. DeepSpeed and FSDP have additional dependencies. Some features require specific GPU architectures (e.g., bf16 requires Ampere or newer).
HISTORY
accelerate was developed by Hugging Face and first released in 2021. It was created to simplify distributed training and mixed precision workflows, reducing the barrier to training large models on diverse hardware configurations.
