Linux Command Library
commands
Commands
basic
Basic
tips
Tips

ffmpeg

ffmpeg video converter

- Extract the sound from a video and save it as MP3:
ffmpeg -i [video.mp4] -vn [sound].mp3

- Convert frames from a video or GIF into individual numbered images:
ffmpeg -i [video.mpg|video.gif] [frame_%d.png]

- Combine numbered images (frame_1.jpg, frame_2.jpg, etc) into a video or GIF:
ffmpeg -i [frame_%d.jpg] -f image2 [video.mpg|video.gif]

- Quickly extract a single frame from a video at time mm:ss and save it as a 128x128 resolution image:
ffmpeg -ss [mm:ss] -i [video.mp4] -frames 1 -s [128x128] -f image2 [image.png]

- Trim a video from a given start time mm:ss to a duration of mm2:ss2 from that time. (Omit the -t flag to trim till the end):
ffmpeg -ss [mm:ss] -i [video.mp4] -codec copy -t [mm2:ss2] [output.mp4]

- Convert AVI video to MP4. AAC Audio @ 128kbit, h264 Video @ CRF 23:
ffmpeg -i [input_video].avi -codec:audio aac -b:audio 128k -codec:video libx264 -crf 23 [output_video].mp4

- Remux MKV video to MP4 without re-encoding audio or video streams:
ffmpeg -i [input_video].mkv -codec copy [output_video].mp4

- Convert MP4 video to VP9 codec. For the best quality, use a CRF value (recommended range 15-35) and -b:video MUST be 0:
ffmpeg -i [input_video].mp4 -codec:video libvpx-vp9 -crf [30] -b:video 0 -codec:audio libopus -vbr on -threads [number_of_threads] [output_video].webm

ffmpeg [global_options] {[input_file_options] -i input_file} ... {[output_file_options] output_file} ...

ffmpeg is a very fast video and audio converter that can also grab from a live audio/video source. It can also convert between arbitrary sample rates and resize video on the fly with a high quality polyphase filter.

ffmpeg reads from an arbitrary number of input "files" (which can be regular files, pipes, network streams, grabbing devices, etc.), specified by the "-i" option, and writes to an arbitrary number of output "files", which are specified by a plain output filename. Anything found on the command line which cannot be interpreted as an option is considered to be an output filename.

Each input or output file can in principle contain any number of streams of different types (video/audio/subtitle/attachment/data). Allowed number and/or types of streams can be limited by the container format. Selecting, which streams from which inputs go into output, is done either automatically or with the "-map" option (see the Stream selection chapter).

To refer to input files in options, you must use their indices (0-based). E.g. the first input file is 0, the second is 1 etc. Similarly, streams within a file are referred to by their indices. E.g. "2:3" refers to the fourth stream in the third input file. See also the Stream specifiers chapter.

As a general rule, options are applied to the next specified file. Therefore, order is important, and you can have the same option on the command line multiple times. Each occurrence is then applied to the next input or output file. Exceptions from this rule are the global options (e.g. verbosity level), which should be specified first.

Do not mix input and output files -- first specify all input files, then all output files. Also do not mix options which belong to different files. All options apply ONLY to the next input or output file and are reset between files.

To set the video bitrate of the output file to 64kbit/s:

 ffmpeg -i input.avi -b:v 64k -bufsize 64k output.avi

To force the frame rate of the output file to 24 fps:

 ffmpeg -i input.avi -r 24 output.avi

To force the frame rate of the input file (valid for raw formats only) to 1 fps and the frame rate of the output file to 24 fps:

 ffmpeg -r 1 -i input.m2v -r 24 output.avi

The format option may be needed for raw input files.

The transcoding process in ffmpeg for each output can be described by the following diagram:

 _______ ______________ _________ ______________ ________ | | | | | | | | | | | input | demuxer | encoded data | decoder | decoded | encoder | encoded data | muxer | output | | file | ---------> | packets | ---------> | frames | ---------> | packets | -------> | file | |_______| |______________| |_________| |______________| |________|

ffmpeg calls the libavformat library (containing demuxers) to read input files and get packets containing encoded data from them. When there are multiple input files, ffmpeg tries to keep them synchronized by tracking lowest timestamp on any active input stream.

Encoded packets are then passed to the decoder (unless streamcopy is selected for the stream, see further for a description). The decoder produces uncompressed frames (raw video/PCM audio/...) which can be processed further by filtering (see next section). After filtering the frames are passed to the encoder, which encodes them and outputs encoded packets again. Finally those are passed to the muxer, which writes the encoded packets to the output file.

Filtering
Before encoding, ffmpeg can process raw audio and video frames using filters from the libavfilter library. Several chained filters form a filter graph. ffmpeg distinguishes between two types of filtergraphs - simple and complex.

Simple filtergraphs

Simple filtergraphs are those that have exactly one input and output, both of the same type. In the above diagram they can be represented by simply inserting an additional step between decoding and encoding:

 _________ __________ ______________ | | | | | | | decoded | simple filtergraph | filtered | encoder | encoded data | | frames | -------------------> | frames | ---------> | packets | |_________| |__________| |______________|

Simple filtergraphs are configured with the per-stream -filter option (with -vf and -af aliases for video and audio respectively). A simple filtergraph for video can look for example like this:

 _______ _____________ _______ _____ ________ | | | | | | | | | | | input | ---> | deinterlace | ---> | scale | ---> | fps | ---> | output | |_______| |_____________| |_______| |_____| |________|

Note that some filters change frame properties but not frame contents. E.g. the "fps" filter in the example above changes number of frames, but does not touch the frame contents. Another example is the "setpts" filter, which only sets timestamps and otherwise passes the frames unchanged.

Complex filtergraphs

Complex filtergraphs are those which cannot be described as simply a linear processing chain applied to one stream. This is the case e.g. when the graph has more than one input and/or output, or when output stream type is different from input. They can be represented with the following diagram:

 _________ | | | input 0 |\ __________ |_________| \ | | \ _________ /| output 0 | \ | | / |__________| _________ \| complex | / | | | |/ | input 1 |---->| filter |\ |_________| | | \ __________ /| graph | \ | | / | | \| output 1 | _________ / |_________| |__________| | | / | input 2 |/ |_________|

Complex filtergraphs are configured with the -filter_complex option. Note that this option is global, since a complex filtergraph by its nature cannot be unambiguously associated with a single stream or file.

A trivial example of a complex filtergraph is the "overlay" filter, which has two video inputs and one video output, containing one video overlaid on top of the other. Its audio counterpart is the "amix" filter.

Stream copy
Stream copy is a mode selected by supplying the "copy" parameter to the -codec option. It makes ffmpeg omit the decoding and encoding step for the specified stream, so it does only demuxing and muxing. It is useful for changing the container format or modifying container-level metadata. The diagram above will in this case simplify to this:

 _______ ______________ ________ | | | | | | | input | demuxer | encoded data | muxer | output | | file | ---------> | packets | -------> | file | |_______| |______________| |________|

Since there is no decoding or encoding, it is very fast and there is no quality loss. However it might not work in some cases because of many factors. Applying filters is obviously also impossible, since filters work on uncompressed data.

By default ffmpeg includes only one stream of each type (video, audio, subtitle) present in the input files and adds them to each output file. It picks the "best" of each based upon the following criteria; for video it is the stream with the highest resolution, for audio the stream with the most channels, for subtitle it’s the first subtitle stream. In the case where several streams of the same type rate equally, the lowest numbered stream is chosen.

You can disable some of those defaults by using "-vn/-an/-sn" options. For full manual control, use the "-map" option, which disables the defaults just described.

All the numerical options, if not specified otherwise, accept in input a string representing a number, which may contain one of the SI unit prefixes, for example ’K’, ’M’, ’G’. If ’i’ is appended after the prefix, binary prefixes are used, which are based on powers of 1024 instead of powers of 1000. The ’B’ postfix multiplies the value by 8, and can be appended after a unit prefix or used alone. This allows using for example ’ KB ’, ’MiB’, ’G’ and ’B’ as number postfix.

Options which do not take arguments are boolean options, and set the corresponding value to true. They can be set to false by prefixing with "no" the option name, for example using "-nofoo" in the command line will set to false the boolean option with name "foo".

Stream specifiers
Some options are applied per-stream, e.g. bitrate or codec. Stream specifiers are used to precisely specify which stream(s) does a given option belong to.

A stream specifier is a string generally appended to the option name and separated from it by a colon. E.g. "-codec:a:1 ac3" option contains "a:1" stream specifier, which matches the second audio stream. Therefore it would select the ac3 codec for the second audio stream.

A stream specifier can match several streams, the option is then applied to all of them. E.g. the stream specifier in "-b:a 128k" matches all audio streams.

An empty stream specifier matches all streams, for example "-codec copy" or "-codec: copy" would copy all the streams without reencoding.

Possible forms of stream specifiers are:
stream_index

Matches the stream with this index. E.g. "-threads:1 4" would set the thread count for the second stream to 4.

stream_type[:stream_index]

stream_type is one of: ’v’ for video, ’a’ for audio, ’s’ for subtitle, ’d’ for data and ’t’ for attachments. If stream_index is given, then matches stream number stream_index of this type. Otherwise matches all streams of this type.

p:program_id[:stream_index]

If stream_index is given, then matches stream number stream_index in program with id program_id. Otherwise matches all streams in this program.

#stream_id

Matches the stream by format-specific ID.

Generic options
These options are shared amongst the avahi-browse.1.gz avahi-browse-domains.1.gz avahi-publish.1.gz avahi-publish-address.1.gz avahi-publish-service.1.gz avahi-resolve.1.gz avahi-resolve-address.1.gz avahi-resolve-host-name.1.gz avahi-set-host-name.1.gz avconv.1.gz avidemux.1.gz avidemux2_gtk.1.gz avplay.1.gz avprobe.1.gz avserver.1.gz tools.

-L

Show license.

-h, -?, -help, --help [arg]

Show help. An optional parameter may be specified to print help about a specific item.

Possible values of arg are:
decoder=
decoder_name

Print detailed information about the decoder named decoder_name. Use the -decoders option to get a list of all decoders.

encoder=encoder_name

Print detailed information about the encoder named encoder_name. Use the -encoders option to get a list of all encoders.

demuxer=demuxer_name

Print detailed information about the demuxer named demuxer_name. Use the -formats option to get a list of all demuxers and muxers.

muxer=muxer_name

Print detailed information about the muxer named muxer_name. Use the -formats option to get a list of all muxers and demuxers.

-version

Show version.

-formats

Show available formats.

The fields preceding the format names have the following meanings:

D

Decoding available

E

Encoding available

-codecs

Show all codecs known to libavcodec.

Note that the term ’codec’ is used throughout this documentation as a shortcut for what is more correctly called a media bitstream format.

-decoders

Show available decoders.

-encoders

Show all available encoders.

-bsfs

Show available bitstream filters.

-protocols

Show available protocols.

-filters

Show available libavfilter filters.

-pix_fmts

Show available pixel formats.

-sample_fmts

Show available sample formats.

-layouts

Show channel names and standard channel layouts.

-loglevel loglevel | -v loglevel

Set the logging level used by the library. loglevel is a number or a string containing one of the following values:
quiet
panic
fatal
error
warning
info
verbose
debug

By default the program logs to stderr, if coloring is supported by the terminal, colors are used to mark errors and warnings. Log coloring can be disabled setting the environment variable AV_LOG_FORCE_NOCOLOR or NO_COLOR , or can be forced setting the environment variable AV_LOG_FORCE_COLOR . The use of the environment variable NO_COLOR is deprecated and will be dropped in a following FFmpeg version.

-report

Dump full command line and console output to a file named "program-YYYYMMDD-HHMMSS.log" in the current directory. This file can be useful for bug reports. It also implies "-loglevel verbose".

Setting the environment variable "FFREPORT" to any value has the same effect. If the value is a ’:’-separated key=value sequence, these options will affect the report; options values must be escaped if they contain special characters or the options delimiter ’:’ (see the ’’Quoting and escaping’’ section in the ffmpeg-utils manual). The following option is recognized:
file

set the file name to use for the report; %p is expanded to the name of the program, %t is expanded to a timestamp, "%%" is expanded to a plain "%"

Errors in parsing the environment variable are not fatal, and will not appear in the report.

-cpuflags flags (global)

Allows setting and clearing cpu flags. This option is intended for testing. Do not use it unless you know what you’re doing.

 ffmpeg -cpuflags -sse+mmx ... ffmpeg -cpuflags mmx ... ffmpeg -cpuflags 0 ...

AVOptions
These options are provided directly by the libavformat, libavdevice and libavcodec libraries. To see the list of available AVOptions, use the -help option. They are separated into two categories:
generic

These options can be set for any container, codec or device. Generic options are listed under AVFormatContext options for containers/devices and under AVCodecContext options for codecs.

private

These options are specific to the given container, device or codec. Private options are listed under their corresponding containers/devices/codecs.

For example to write an ID3v2.3 header instead of a default ID3v2.4 to an MP3 file, use the id3v2_version private option of the MP3 muxer:

 ffmpeg -i input.flac -id3v2_version 3 out.mp3

All codec AVOptions are obviously per-stream, so the chapter on stream specifiers applies to them

Note -nooption syntax cannot be used for boolean AVOptions, use -option 0/-option 1.

Note2 old undocumented way of specifying per-stream AVOptions by prepending v/a/s to the options name is now obsolete and will be removed soon.

Main options
-f
fmt (input/output)

Force input or output file format. The format is normally auto detected for input files and guessed from file extension for output files, so this option is not needed in most cases.

-i filename (input)

input file name

-y (global)

Overwrite output files without asking.

-n (global)

Do not overwrite output files but exit if file exists.

-c[:stream_specifier] codec (input/output,per-stream)
-codec[:
stream_specifier] codec (input/output,per-stream)

Select an encoder (when used before an output file) or a decoder (when used before an input file) for one or more streams. codec is the name of a decoder/encoder or a special value "copy" (output only) to indicate that the stream is not to be re-encoded.

For example

 ffmpeg -i INPUT -map 0 -c:v libx264 -c:a copy OUTPUT

encodes all video streams with libx264 and copies all audio streams.

For each stream, the last matching "c" option is applied, so

 ffmpeg -i INPUT -map 0 -c copy -c:v:1 libx264 -c:a:137 libvorbis OUTPUT

will copy all the streams except the second video, which will be encoded with libx264, and the 138th audio, which will be encoded with libvorbis.

-t duration (output)

Stop writing the output after its duration reaches duration. duration may be a number in seconds, or in "hh:mm:ss[.xxx]" form.

-to and -t are mutually exclusive and -t has priority.

-to position (output)

Stop writing the output at position. position may be a number in seconds, or in "hh:mm:ss[.xxx]" form.

-to and -t are mutually exclusive and -t has priority.

-fs limit_size (output)

Set the file size limit, expressed in bytes.

-ss position (input/output)

When used as an input option (before "-i"), seeks in this input file to position. When used as an output option (before an output filename), decodes but discards input until the timestamps reach position. This is slower, but more accurate.

position may be either in seconds or in "hh:mm:ss[.xxx]" form.

-itsoffset offset (input)

Set the input time offset in seconds. "[-]hh:mm:ss[.xxx]" syntax is also supported. The offset is added to the timestamps of the input files. Specifying a positive offset means that the corresponding streams are delayed by offset seconds.

-timestamp time (output)

Set the recording timestamp in the container. The syntax for time is:

 now|([(YYYY-MM-DD|YYYYMMDD)[T|t| ]]((HH:MM:SS[.m...])|(HHMMSS[.m...]))[Z|z])

If the value is "now" it takes the current time. Time is local time unless ’Z’ or ’z’ is appended, in which case it is interpreted as UTC. If the year-month-day part is not specified it takes the current year-month-day.

-metadata[:metadata_specifier] key=value (output,per-metadata)

Set a metadata key/value pair.

An optional metadata_specifier may be given to set metadata on streams or chapters. See "-map_metadata" documentation for details.

This option overrides metadata set with "-map_metadata". It is also possible to delete metadata by using an empty value.

For example, for setting the title in the output file:

 ffmpeg -i in.avi -metadata title="my title" out.flv

To set the language of the first audio stream:

 ffmpeg -i INPUT -metadata:s:a:1 language=eng OUTPUT

-target type (output)

Specify target file type ("vcd", "svcd", "dvd", "dv", "dv50"). type may be prefixed with "pal-", "ntsc-" or "film-" to use the corresponding standard. All the format options (bitrate, codecs, buffer sizes) are then set automatically. You can just type:

 ffmpeg -i myfile.avi -target vcd /tmp/vcd.mpg

Nevertheless you can specify additional options as long as you know they do not conflict with the standard, as in:

 ffmpeg -i myfile.avi -target vcd -bf 2 /tmp/vcd.mpg

-dframes number (output)

Set the number of data frames to record. This is an alias for "-frames:d".

-frames[:stream_specifier] framecount (output,per-stream)

Stop writing to the stream after framecount frames.

-q[:stream_specifier] q (output,per-stream)
-qscale[:
stream_specifier] q (output,per-stream)

Use fixed quality scale ( VBR ). The meaning of q is codec-dependent.

-filter[:stream_specifier] filter_graph (output,per-stream)

Create the filter graph specified by filter_graph and use it to filter the stream.

filter_graph is a description of the filter graph to apply to the stream, and must have a single input and a single output of the same type of the stream. In the filter graph, the input is associated to the label "in", and the output to the label "out". See the ffmpeg-filters manual for more information about the filtergraph syntax.

See the -filter_complex option if you want to create filter graphs with multiple inputs and/or outputs.

-pre[:stream_specifier] preset_name (output,per-stream)

Specify the preset for matching stream(s).

-stats (global)

Print encoding progress/statistics. On by default.

-progress url (global)

Send program-friendly progress information to url.

Progress information is written approximately every second and at the end of the encoding process. It is made of "key=value" lines. key consists of only alphanumeric characters. The last key of a sequence of progress information is always "progress".

-stdin

Enable interaction on standard input. On by default unless standard input is used as an input. To explicitly disable interaction you need to specify "-nostdin".

Disabling interaction on standard input is useful, for example, if ffmpeg is in the background process group. Roughly the same result can be achieved with "ffmpeg ... < /dev/null" but it requires a shell.

-debug_ts (global)

Print timestamp information. It is off by default. This option is mostly useful for testing and debugging purposes, and the output format may change from one version to another, so it should not be employed by portable scripts.

See also the option "-fdebug ts".

-attach filename (output)

Add an attachment to the output file. This is supported by a few formats like Matroska for e.g. fonts used in rendering subtitles. Attachments are implemented as a specific type of stream, so this option will add a new stream to the file. It is then possible to use per-stream options on this stream in the usual way. Attachment streams created with this option will be created after all the other streams (i.e. those created with "-map" or automatic mappings).

Note that for Matroska you also have to set the mimetype metadata tag:

 ffmpeg -i INPUT -attach DejaVuSans.ttf -metadata:s:2 mimetype=application/x-truetype-font out.mkv

(assuming that the attachment stream will be third in the output file).

-dump_attachment[:stream_specifier] filename (input,per-stream)

Extract the matching attachment stream into a file named filename. If filename is empty, then the value of the "filename" metadata tag will be used.

E.g. to extract the first attachment to a file named ’out.ttf’:

 ffmpeg -dump_attachment:t:0 out.ttf -i INPUT

To extract all attachments to files determined by the "filename" tag:

 ffmpeg -dump_attachment:t "" -i INPUT

Technical note -- attachments are implemented as codec extradata, so this option can actually be used to extract extradata from any stream, not just attachments.

Video Options
-vframes
number (output)

Set the number of video frames to record. This is an alias for "-frames:v".

-r[:stream_specifier] fps (input/output,per-stream)

Set frame rate (Hz value, fraction or abbreviation).

As an input option, ignore any timestamps stored in the file and instead generate timestamps assuming constant frame rate fps.

As an output option, duplicate or drop input frames to achieve constant output frame rate fps.

-s[:stream_specifier] size (input/output,per-stream)

Set frame size.

As an input option, this is a shortcut for the video_size private option, recognized by some demuxers for which the frame size is either not stored in the file or is configurable -- e.g. raw video or video grabbers.

As an output option, this inserts the "scale" video filter to the end of the corresponding filtergraph. Please use the "scale" filter directly to insert it at the beginning or some other place.

The format is wxh (default - same as source).

-aspect[:stream_specifier] aspect (output,per-stream)

Set the video display aspect ratio specified by aspect.

aspect can be a floating point number string, or a string of the form num:den, where num and den are the numerator and denominator of the aspect ratio. For example "4:3", "16:9", "1.3333", and "1.7777" are valid argument values.

-vn (output)

Disable video recording.

-vcodec codec (output)

Set the video codec. This is an alias for "-codec:v".

-pass[:stream_specifier] n (output,per-stream)

Select the pass number (1 or 2). It is used to do two-pass video encoding. The statistics of the video are recorded in the first pass into a log file (see also the option -passlogfile), and in the second pass that log file is used to generate the video at the exact requested bitrate. On pass 1, you may just deactivate audio and set output to null, examples for Windows and Unix:

 ffmpeg -i foo.mov -c:v libxvid -pass 1 -an -f rawvideo -y NUL ffmpeg -i foo.mov -c:v libxvid -pass 1 -an -f rawvideo -y /dev/null

-passlogfile[:stream_specifier] prefix (output,per-stream)

Set two-pass log file name prefix to prefix, the default file name prefix is ’’ffmpeg2pass’’. The complete file name will be PREFIX-N .log, where N is a number specific to the output stream

-vlang code

Set the ISO 639 language code (3 letters) of the current video stream.

-vf filter_graph (output)

Create the filter graph specified by filter_graph and use it to filter the stream.

This is an alias for "-filter:v", see the -filter option.

Advanced Video Options
-pix_fmt[:
stream_specifier] format (input/output,per-stream)

Set pixel format. Use "-pix_fmts" to show all the supported pixel formats. If the selected pixel format can not be selected, ffmpeg will print a warning and select the best pixel format supported by the encoder. If pix_fmt is prefixed by a "+", ffmpeg will exit with an error if the requested pixel format can not be selected, and automatic conversions inside filter graphs are disabled. If pix_fmt is a single "+", ffmpeg selects the same pixel format as the input (or graph output) and automatic conversions are disabled.

-sws_flags flags (input/output)

Set SwScaler flags.

-vdt n

Discard threshold.

-rc_override[:stream_specifier] override (output,per-stream)

Rate control override for specific intervals, formatted as "int,int,int" list separated with slashes. Two first values are the beginning and end frame numbers, last one is quantizer to use if positive, or quality factor if negative.

-deinterlace

Deinterlace pictures. This option is deprecated since the deinterlacing is very low quality. Use the yadif filter with "-filter:v yadif".

-ilme

Force interlacing support in encoder ( MPEG-2 and MPEG-4 only). Use this option if your input file is interlaced and you want to keep the interlaced format for minimum losses. The alternative is to deinterlace the input stream with -deinterlace, but deinterlacing introduces losses.

-psnr

Calculate PSNR of compressed frames.

-vstats

Dump video coding statistics to vstats_HHMMSS.log.

-vstats_file file

Dump video coding statistics to file.

-top[:stream_specifier] n (output,per-stream)

top=1/bottom=0/auto=-1 field first

-dc precision

Intra_dc_precision.

-vtag fourcc/tag (output)

Force video tag/fourcc. This is an alias for "-tag:v".

-qphist (global)

Show QP histogram

-vbsf bitstream_filter

Deprecated see -bsf

-force_key_frames[:stream_specifier] time[,time...] (output,per-stream)
-force_key_frames[:
stream_specifier] expr:expr (output,per-stream)

Force key frames at the specified timestamps, more precisely at the first frames after each specified time.

If the argument is prefixed with "expr:", the string expr is interpreted like an expression and is evaluated for each frame. A key frame is forced in case the evaluation is non-zero.

If one of the times is ""chapters"[delta]", it is expanded into the time of the beginning of all chapters in the file, shifted by delta, expressed as a time in seconds. This option can be useful to ensure that a seek point is present at a chapter mark or any other designated place in the output file.

For example, to insert a key frame at 5 minutes, plus key frames 0.1 second before the beginning of every chapter:

 -force_key_frames 0:05:00,chapters-0.1

The expression in expr can contain the following constants:

n

the number of current processed frame, starting from 0

n_forced

the number of forced frames

prev_forced_n

the number of the previous forced frame, it is "NAN" when no keyframe was forced yet

prev_forced_t

the time of the previous forced frame, it is "NAN" when no keyframe was forced yet

t

the time of the current processed frame

For example to force a key frame every 5 seconds, you can specify:

 -force_key_frames expr:gte(t,n_forced*5)

To force a key frame 5 seconds after the time of the last forced one, starting from second 13:

 -force_key_frames expr:if(isnan(prev_forced_t),gte(t,13),gte(t,prev_forced_t+5))

Note that forcing too many keyframes is very harmful for the lookahead algorithms of certain encoders: using fixed-GOP options or similar would be more efficient.

-copyinkf[:stream_specifier] (output,per-stream)

When doing stream copy, copy also non-key frames found at the beginning.

Audio Options
-aframes
number (output)

Set the number of audio frames to record. This is an alias for "-frames:a".

-ar[:stream_specifier] freq (input/output,per-stream)

Set the audio sampling frequency. For output streams it is set by default to the frequency of the corresponding input stream. For input streams this option only makes sense for audio grabbing devices and raw demuxers and is mapped to the corresponding demuxer options.

-aq q (output)

Set the audio quality (codec-specific, VBR ). This is an alias for -q:a.

-ac[:stream_specifier] channels (input/output,per-stream)

Set the number of audio channels. For output streams it is set by default to the number of input audio channels. For input streams this option only makes sense for audio grabbing devices and raw demuxers and is mapped to the corresponding demuxer options.

-an (output)

Disable audio recording.

-acodec codec (input/output)

Set the audio codec. This is an alias for "-codec:a".

-sample_fmt[:stream_specifier] sample_fmt (output,per-stream)

Set the audio sample format. Use "-sample_fmts" to get a list of supported sample formats.

-af filter_graph (output)

Create the filter graph specified by filter_graph and use it to filter the stream.

This is an alias for "-filter:a", see the -filter option.

Advanced Audio options:
-atag
fourcc/tag (output)

Force audio tag/fourcc. This is an alias for "-tag:a".

-absf bitstream_filter

Deprecated, see -bsf

-guess_layout_max channels (input,per-stream)

If some input channel layout is not known, try to guess only if it corresponds to at most the specified number of channels. For example, 2 tells to ffmpeg to recognize 1 channel as mono and 2 channels as stereo but not 6 channels as 5.1. The default is to always try to guess. Use 0 to disable all guessing.

Subtitle options:
-slang
code

Set the ISO 639 language code (3 letters) of the current subtitle stream.

-scodec codec (input/output)

Set the subtitle codec. This is an alias for "-codec:s".

-sn (output)

Disable subtitle recording.

-sbsf bitstream_filter

Deprecated, see -bsf

Advanced Subtitle options:
-fix_sub_duration

Fix subtitles durations. For each subtitle, wait for the next packet in the same stream and adjust the duration of the first to avoid overlap. This is necessary with some subtitles codecs, especially DVB subtitles, because the duration in the original packet is only a rough estimate and the end is actually marked by an empty subtitle frame. Failing to use this option when necessary can result in exaggerated durations or muxing failures due to non-monotonic timestamps.

Note that this option will delay the output of all data until the next subtitle packet is decoded: it may increase memory consumption and latency a lot.

Advanced options
-map
[-]
input_file_id[:stream_specifier][,sync_file_id[:stream_specifier]] |
[linklabel]
(output)

Designate one or more input streams as a source for the output file. Each input stream is identified by the input file index input_file_id and the input stream index input_stream_id within the input file. Both indices start at 0. If specified, sync_file_id:stream_specifier sets which input stream is used as a presentation sync reference.

The first "-map" option on the command line specifies the source for output stream 0, the second "-map" option specifies the source for output stream 1, etc.

A "-" character before the stream identifier creates a "negative" mapping. It disables matching streams from already created mappings.

An alternative [linklabel] form will map outputs from complex filter graphs (see the -filter_complex option) to the output file. linklabel must correspond to a defined output link label in the graph.

For example, to map ALL streams from the first input file to output

 ffmpeg -i INPUT -map 0 output

For example, if you have two audio streams in the first input file, these streams are identified by "0:0" and "0:1". You can use "-map" to select which streams to place in an output file. For example:

 ffmpeg -i INPUT -map 0:1 out.wav

will map the input stream in INPUT identified by "0:1" to the (single) output stream in out.wav.

For example, to select the stream with index 2 from input file a.mov (specified by the identifier "0:2"), and stream with index 6 from input b.mov (specified by the identifier "1:6"), and copy them to the output file out.mov:

 ffmpeg -i a.mov -i b.mov -c copy -map 0:2 -map 1:6 out.mov

To select all video and the third audio stream from an input file:

 ffmpeg -i INPUT -map 0:v -map 0:a:2 OUTPUT

To map all the streams except the second audio, use negative mappings

 ffmpeg -i INPUT -map 0 -map -0:a:1 OUTPUT

Note that using this option disables the default mappings for this output file.

-map_channel
[
input_file_id.stream_specifier.channel_id|-1][:output_file_id.stream_specifier]

Map an audio channel from a given input to an output. If output_file_id.stream_specifier is not set, the audio channel will be mapped on all the audio streams.

Using "-1" instead of input_file_id.stream_specifier.channel_id will map a muted channel.

For example, assuming INPUT is a stereo audio file, you can switch the two audio channels with the following command:

 ffmpeg -i INPUT -map_channel 0.0.1 -map_channel 0.0.0 OUTPUT

If you want to mute the first channel and keep the second:

 ffmpeg -i INPUT -map_channel -1 -map_channel 0.0.1 OUTPUT

The order of the "-map_channel" option specifies the order of the channels in the output stream. The output channel layout is guessed from the number of channels mapped (mono if one "-map_channel", stereo if two, etc.). Using "-ac" in combination of "-map_channel" makes the channel gain levels to be updated if input and output channel layouts don’t match (for instance two "-map_channel" options and "-ac 6").

You can also extract each channel of an input to specific outputs; the following command extracts two channels of the INPUT audio stream (file 0, stream 0) to the respective OUTPUT_CH0 and OUTPUT_CH1 outputs:

 ffmpeg -i INPUT -map_channel 0.0.0 OUTPUT_CH0 -map_channel 0.0.1 OUTPUT_CH1

The following example splits the channels of a stereo input into two separate streams, which are put into the same output file:

 ffmpeg -i stereo.wav -map 0:0 -map 0:0 -map_channel 0.0.0:0.0 -map_channel 0.0.1:0.1 -y out.ogg

Note that currently each output stream can only contain channels from a single input stream; you can’t for example use "-map_channel" to pick multiple input audio channels contained in different streams (from the same or different files) and merge them into a single output stream. It is therefore not currently possible, for example, to turn two separate mono streams into a single stereo stream. However splitting a stereo stream into two single channel mono streams is possible.

If you need this feature, a possible workaround is to use the amerge filter. For example, if you need to merge a media (here input.mkv) with 2 mono audio streams into one single stereo channel audio stream (and keep the video stream), you can use the following command:

 ffmpeg -i input.mkv -filter_complex "[0:1] [0:2] amerge" -c:a pcm_s16le -c:v copy output.mkv

-map_metadata[:metadata_spec_out] infile[:metadata_spec_in]
(
output,per-metadata)

Set metadata information of the next output file from infile. Note that those are file indices (zero-based), not filenames. Optional metadata_spec_in/out parameters specify, which metadata to copy. A metadata specifier can have the following forms:

g

global metadata, i.e. metadata that applies to the whole file

s[:stream_spec]

per-stream metadata. stream_spec is a stream specifier as described in the Stream specifiers chapter. In an input metadata specifier, the first matching stream is copied from. In an output metadata specifier, all matching streams are copied to.

c:chapter_index

per-chapter metadata. chapter_index is the zero-based chapter index.

p:program_index

per-program metadata. program_index is the zero-based program index.

If metadata specifier is omitted, it defaults to global.

By default, global metadata is copied from the first input file, per-stream and per-chapter metadata is copied along with streams/chapters. These default mappings are disabled by creating any mapping of the relevant type. A negative file index can be used to create a dummy mapping that just disables automatic copying.

For example to copy metadata from the first stream of the input file to global metadata of the output file:

 ffmpeg -i in.ogg -map_metadata 0:s:0 out.mp3

To do the reverse, i.e. copy global metadata to all audio streams:

 ffmpeg -i in.mkv -map_metadata:s:a 0:g out.mkv

Note that simple 0 would work as well in this example, since global metadata is assumed by default.

-map_chapters input_file_index (output)

Copy chapters from input file with index input_file_index to the next output file. If no chapter mapping is specified, then chapters are copied from the first input file with at least one chapter. Use a negative file index to disable any chapter copying.

-benchmark (global)

Show benchmarking information at the end of an encode. Shows CPU time used and maximum memory consumption. Maximum memory consumption is not supported on all systems, it will usually display as 0 if not supported.

-benchmark_all (global)

Show benchmarking information during the encode. Shows CPU time used in various steps (audio/video encode/decode).

-timelimit duration (global)

Exit after ffmpeg has been running for duration seconds.

-dump (global)

Dump each input packet to stderr.

-hex (global)

When dumping packets, also dump the payload.

-re (input)

Read input at native frame rate. Mainly used to simulate a grab device. By default ffmpeg attempts to read the input(s) as fast as possible. This option will slow down the reading of the input(s) to the native frame rate of the input(s). It is useful for real-time output (e.g. live streaming). If your input(s) is coming from some other live streaming source (through HTTP or UDP for example) the server might already be in real-time, thus the option will likely not be required. On the other hand, this is meaningful if your input(s) is a file you are trying to push in real-time.

-loop_input

Loop over the input stream. Currently it works only for image streams. This option is used for automatic FFserver testing. This option is deprecated, use -loop 1.

-loop_output number_of_times

Repeatedly loop output for formats that support looping such as animated GIF (0 will loop the output infinitely). This option is deprecated, use -loop.

-vsync parameter

Video sync method. For compatibility reasons old values can be specified as numbers. Newly added values will have to be specified as strings always.
0, passthrough

Each frame is passed with its timestamp from the demuxer to the muxer.

1, cfr

Frames will be duplicated and dropped to achieve exactly the requested constant framerate.

2, vfr

Frames are passed through with their timestamp or dropped so as to prevent 2 frames from having the same timestamp.

drop

As passthrough but destroys all timestamps, making the muxer generate fresh timestamps based on frame-rate.

-1, auto

Chooses between 1 and 2 depending on muxer capabilities. This is the default method.

With -map you can select from which stream the timestamps should be taken. You can leave either video or audio unchanged and sync the remaining stream(s) to the unchanged one.

-async samples_per_second

Audio sync method. "Stretches/squeezes" the audio stream to match the timestamps, the parameter is the maximum samples per second by which the audio is changed. -async 1 is a special case where only the start of the audio stream is corrected without any later correction. This option has been deprecated. Use the "aresample" audio filter instead.

-copyts

Do not process input timestamps, but keep their values without trying to sanitize them. In particular, do not remove the initial start time offset value.

Note that, depending on the vsync option or on specific muxer processing, the output timestamps may mismatch with the input timestamps even when this option is selected.

-copytb mode

Specify how to set the encoder timebase when stream copying. mode is an integer numeric value, and can assume one of the following values:

1

Use the demuxer timebase.

The time base is copied to the output encoder from the corresponding input demuxer. This is sometimes required to avoid non monotonically increasing timestamps when copying video streams with variable frame rate.

0

Use the decoder timebase.

The time base is copied to the output encoder from the corresponding input decoder.

-1

Try to make the choice automatically, in order to generate a sane output.

Default value is -1.

-shortest (output)

Finish encoding when the shortest input stream ends.

-dts_delta_threshold

Timestamp discontinuity delta threshold.

-muxdelay seconds (input)

Set the maximum demux-decode delay.

-muxpreload seconds (input)

Set the initial demux-decode delay.

-streamid output-stream-index:new-value (output)

Assign a new stream-id value to an output stream. This option should be specified prior to the output filename to which it applies. For the situation where multiple output files exist, a streamid may be reassigned to a different value.

For example, to set the stream 0 PID to 33 and the stream 1 PID to 36 for an output mpegts file:

 ffmpeg -i infile -streamid 0:33 -streamid 1:36 out.ts

-bsf[:stream_specifier] bitstream_filters (output,per-stream)

Set bitstream filters for matching streams. bitstream_filters is a comma-separated list of bitstream filters. Use the "-bsfs" option to get the list of bitstream filters.

 ffmpeg -i h264.mp4 -c:v copy -bsf:v h264_mp4toannexb -an out.h264 ffmpeg -i file.mov -an -vn -bsf:s mov2textsub -c:s copy -f rawvideo sub.txt

-tag[:stream_specifier] codec_tag (per-stream)

Force a tag/fourcc for matching streams.

-timecode hh:mm:ss SEP ff

Specify Timecode for writing. SEP is ’:’ for non drop timecode and ’;’ (or ’.’) for drop.

 ffmpeg -i input.mpg -timecode 01:02:03.04 -r 30000/1001 -s ntsc output.mpg

-filter_complex filtergraph (global)

Define a complex filter graph, i.e. one with arbitrary number of inputs and/or outputs. For simple graphs -- those with one input and one output of the same type -- see the -filter options. filtergraph is a description of the filter graph, as described in the ’’Filtergraph syntax’’ section of the ffmpeg-filters manual.

Input link labels must refer to input streams using the "[file_index:stream_specifier]" syntax (i.e. the same as -map uses). If stream_specifier matches multiple streams, the first one will be used. An unlabeled input will be connected to the first unused input stream of the matching type.

Output link labels are referred to with -map. Unlabeled outputs are added to the first output file.

Note that with this option it is possible to use only lavfi sources without normal input files.

For example, to overlay an image over video

 ffmpeg -i video.mkv -i image.png -filter_complex '[0:v][1:v]overlay[out]' -map '[out]' out.mkv

Here "[0:v]" refers to the first video stream in the first input file, which is linked to the first (main) input of the overlay filter. Similarly the first video stream in the second input is linked to the second (overlay) input of overlay.

Assuming there is only one video stream in each input file, we can omit input labels, so the above is equivalent to

 ffmpeg -i video.mkv -i image.png -filter_complex 'overlay[out]' -map '[out]' out.mkv

Furthermore we can omit the output label and the single output from the filter graph will be added to the output file automatically, so we can simply write

 ffmpeg -i video.mkv -i image.png -filter_complex 'overlay' out.mkv

To generate 5 seconds of pure red video using lavfi "color" source:

 ffmpeg -filter_complex 'color=c=red' -t 5 out.mkv

As a special exception, you can use a bitmap subtitle stream as input: it will be converted into a video with the same size as the largest video in the file, or 720x576 if no video is present. Note that this is an experimental and temporary solution. It will be removed once libavfilter has proper support for subtitles.

For example, to hardcode subtitles on top of a DVB-T recording stored in MPEG-TS format, delaying the subtitles by 1 second:

 ffmpeg -i input.ts -filter_complex \ '[#0x2ef] setpts=PTS+1/TB [sub] ; [#0x2d0] [sub] overlay' \ -sn -map '#0x2dc' output.mkv

(0x2d0, 0x2dc and 0x2ef are the MPEG-TS PIDs of respectively the video, audio and subtitles streams; 0:0, 0:3 and 0:7 would have worked too)

Preset files
A preset file contains a sequence of option=value pairs, one for each line, specifying a sequence of options which would be awkward to specify on the command line. Lines starting with the hash (’#’) character are ignored and are used to provide comments. Check the presets directory in the FFmpeg source tree for examples.

Preset files are specified with the "vpre", "apre", "spre", and "fpre" options. The "fpre" option takes the filename of the preset instead of a preset name as input and can be used for any kind of codec. For the "vpre", "apre", and "spre" options, the options specified in a preset file are applied to the currently selected codec of the same type as the preset option.

The argument passed to the "vpre", "apre", and "spre" preset options identifies the preset file to use according to the following rules:

First ffmpeg searches for a file named arg.ffpreset in the directories $FFMPEG_DATADIR (if set), and $HOME/.ffmpeg, and in the datadir defined at configuration time (usually PREFIX/share/ffmpeg) or in a ffpresets folder along the executable on win32, in that order. For example, if the argument is "libvpx-1080p", it will search for the file libvpx-1080p.ffpreset.

If no such file is found, then ffmpeg will search for a file named codec_name-arg.ffpreset in the above-mentioned directories, where codec_name is the name of the codec to which the preset file options will be applied. For example, if you select the video codec with "-vcodec libvpx" and use "-vpre 1080p", then it will search for the file libvpx-1080p.ffpreset.

For streaming at very low bitrate application, use a low frame rate and a small GOP size. This is especially true for RealVideo where the Linux player does not seem to be very fast, so it can miss frames. An example is:

 ffmpeg -g 3 -r 3 -t 10 -b:v 50k -s qcif -f rv10 /tmp/b.rm

The parameter ’q’ which is displayed while encoding is the current quantizer. The value 1 indicates that a very good quality could be achieved. The value 31 indicates the worst quality. If q=31 appears too often, it means that the encoder cannot compress enough to meet your bitrate. You must either increase the bitrate, decrease the frame rate or decrease the frame size.

If your computer is not fast enough, you can speed up the compression at the expense of the compression ratio. You can use ’-me zero’ to speed up motion estimation, and ’-g 0’ to disable motion estimation completely (you have only I-frames, which means it is about as good as JPEG compression).

To have very low audio bitrates, reduce the sampling frequency (down to 22050 Hz for MPEG audio, 22050 or 11025 for AC-3 ).

To have a constant quality (but a variable bitrate), use the option ’-qscale n’ when ’n’ is between 1 (excellent quality) and 31 (worst quality).

Preset files
A preset file contains a sequence of option=value pairs, one for each line, specifying a sequence of options which can be specified also on the command line. Lines starting with the hash (’#’) character are ignored and are used to provide comments. Empty lines are also ignored. Check the presets directory in the FFmpeg source tree for examples.

Preset files are specified with the "pre" option, this option takes a preset name as input. FFmpeg searches for a file named preset_name.avpreset in the directories $AVCONV_DATADIR (if set), and $HOME/.ffmpeg, and in the data directory defined at configuration time (usually $PREFIX/share/ffmpeg) in that order. For example, if the argument is "libx264-max", it will search for the file libx264-max.avpreset.

Video and Audio grabbing
If you specify the input format and device then ffmpeg can grab video and audio directly.

 ffmpeg -f oss -i /dev/dsp -f video4linux2 -i /dev/video0 /tmp/out.mpg

Or with an ALSA audio source (mono input, card id 1) instead of OSS:

 ffmpeg -f alsa -ac 1 -i hw:1 -f video4linux2 -i /dev/video0 /tmp/out.mpg

Note that you must activate the right video source and channel before launching ffmpeg with any TV viewer such as <http://linux.bytesex.org/xawtv/> by Gerd Knorr. You also have to set the audio recording levels correctly with a standard mixer.

X11 grabbing
Grab the X11 display with ffmpeg via

 ffmpeg -f x11grab -s cif -r 25 -i :0.0 /tmp/out.mpg

0.0 is display.screen number of your X11 server, same as the DISPLAY environment variable.

 ffmpeg -f x11grab -s cif -r 25 -i :0.0+10,20 /tmp/out.mpg

0.0 is display.screen number of your X11 server, same as the DISPLAY environment variable. 10 is the x-offset and 20 the y-offset for the grabbing.

Video and Audio file format conversion
Any supported file format and protocol can serve as input to ffmpeg:

Examples:

You can use YUV files as input:

 ffmpeg -i /tmp/test%d.Y /tmp/out.mpg

It will use the files:

 /tmp/test0.Y, /tmp/test0.U, /tmp/test0.V, /tmp/test1.Y, /tmp/test1.U, /tmp/test1.V, etc...

The Y files use twice the resolution of the U and V files. They are raw files, without header. They can be generated by all decent video decoders. You must specify the size of the image with the -s option if ffmpeg cannot guess it.

You can input from a raw YUV420P file:

 ffmpeg -i /tmp/test.yuv /tmp/out.avi

test.yuv is a file containing raw YUV planar data. Each frame is composed of the Y plane followed by the U and V planes at half vertical and horizontal resolution.

You can output to a raw YUV420P file:

 ffmpeg -i mydivx.avi hugefile.yuv

You can set several input files and output files:

 ffmpeg -i /tmp/a.wav -s 640x480 -i /tmp/a.yuv /tmp/a.mpg

Converts the audio file a.wav and the raw YUV video file a.yuv to MPEG file a.mpg.

You can also do audio and video conversions at the same time:

 ffmpeg -i /tmp/a.wav -ar 22050 /tmp/a.mp2

Converts a.wav to MPEG audio at 22050 Hz sample rate.

You can encode to several formats at the same time and define a mapping from input stream to output streams:

 ffmpeg -i /tmp/a.wav -map 0:a -b:a 64k /tmp/a.mp2 -map 0:a -b:a 128k /tmp/b.mp2

Converts a.wav to a.mp2 at 64 kbits and to b.mp2 at 128 kbits. ’-map file:index’ specifies which input stream is used for each output stream, in the order of the definition of output streams.

You can transcode decrypted VOBs:

 ffmpeg -i snatch_1.vob -f avi -c:v mpeg4 -b:v 800k -g 300 -bf 2 -c:a libmp3lame -b:a 128k snatch.avi

This is a typical DVD ripping example; the input is a VOB file, the output an AVI file with MPEG-4 video and MP3 audio. Note that in this command we use B-frames so the MPEG-4 stream is DivX5 compatible, and GOP size is 300 which means one intra frame every 10 seconds for 29.97fps input video. Furthermore, the audio stream is MP3-encoded so you need to enable LAME support by passing "--enable-libmp3lame" to configure. The mapping is particularly useful for DVD transcoding to get the desired audio language.

NOTE: To see the supported input formats, use "ffmpeg -formats".

You can extract images from a video, or create a video from many images:

For extracting images from a video:

 ffmpeg -i foo.avi -r 1 -s WxH -f image2 foo-%03d.jpeg

This will extract one video frame per second from the video and will output them in files named foo-001.jpeg, foo-002.jpeg, etc. Images will be rescaled to fit the new WxH values.

If you want to extract just a limited number of frames, you can use the above command in combination with the -vframes or -t option, or in combination with -ss to start extracting from a certain point in time.

For creating a video from many images:

 ffmpeg -f image2 -i foo-%03d.jpeg -r 12 -s WxH foo.avi

The syntax "foo-%03d.jpeg" specifies to use a decimal number composed of three digits padded with zeroes to express the sequence number. It is the same syntax supported by the C printf function, but only formats accepting a normal integer are suitable.

When importing an image sequence, -i also supports expanding shell-like wildcard patterns (globbing) internally, by selecting the image2-specific "-pattern_type glob" option.

For example, for creating a video from filenames matching the glob pattern "foo-*.jpeg":

 ffmpeg -f image2 -pattern_type glob -i 'foo-*.jpeg' -r 12 -s WxH foo.avi

You can put many streams of the same type in the output:

 ffmpeg -i test1.avi -i test2.avi -map 0:3 -map 0:2 -map 0:1 -map 0:0 -c copy test12.nut

The resulting output file test12.avi will contain first four streams from the input file in reverse order.

To force CBR video output:

 ffmpeg -i myfile.avi -b 4000k -minrate 4000k -maxrate 4000k -bufsize 1835k out.m2v

The four options lmin, lmax, mblmin and mblmax use ’lambda’ units, but you may use the QP2LAMBDA constant to easily convert from ’q’ units:

 ffmpeg -i src.ext -lmax 21*QP2LAMBDA dst.ext

ffplay(1), ffprobe(1), ffserver(1), ffmpeg-utils(1), ffmpeg-scaler(1), ffmpeg-resampler(1), ffmpeg-codecs(1), ffmpeg-bitstream-filters(1), ffmpeg-formats(1), ffmpeg-devices(1), ffmpeg-protocols(1), ffmpeg-filters(1)

The FFmpeg developers.

For details about the authorship, see the Git history of the project (git://source.ffmpeg.org/ffmpeg), e.g. by typing the command git log in the FFmpeg source directory, or browsing the online repository at <http://source.ffmpeg.org>.

Maintainers for the specific components are listed in the file MAINTAINERS in the source code tree.

play store download app store download
Imprint
Sonnenallee 29, 12047 Berlin, Germany
e-mail: sschubert89@gmail.com

Privacy policy
Successfully copied