Linux Command Library
commands
Commands
basic
Basic
tips
Tips

ffmpeg-devices

FFmpeg devices

This document describes the input and output devices provided by the libavdevice library.

The libavdevice library provides the same interface as libavformat. Namely, an input device is considered like a demuxer, and an output device like a muxer, and the interface and generic device options are the same provided by libavformat (see the ffmpeg-formats manual).

In addition each input or output device may support so-called private options, which are specific for that component.

Options may be set by specifying -option value in the FFmpeg tools, or by setting the value explicitly in the device "AVFormatContext" options or using the libavutil/opt.h API for programmatic use.

Input devices are configured elements in FFmpeg which allow to access the data coming from a multimedia device attached to your system.

When you configure your FFmpeg build, all the supported input devices are enabled by default. You can list all available ones using the configure option "--list-indevs".

You can disable all the input devices using the configure option "--disable-indevs", and selectively enable an input device using the option "--enable-indev= INDEV ", or you can disable a particular input device using the option "--disable-indev= INDEV ".

The option "-formats" of the ffmpeg.1.gz ffmpeg-bitstream-filters.1.gz ffmpeg-codecs.1.gz ffmpeg-devices.1.gz ffmpeg-filters.1.gz ffmpeg-formats.1.gz ffmpeg-protocols.1.gz ffmpeg-resampler.1.gz ffmpeg-scaler.1.gz ffmpeg-utils.1.gz ffmulticonverter.1.gz ffplay.1.gz ffprobe.1.gz ffserver.1.gz tools will display the list of supported input devices (amongst the demuxers).

A description of the currently available input devices follows.

alsa
ALSA
(Advanced Linux Sound Architecture) input device.

To enable this input device during configuration you need libasound installed on your system.

This device allows capturing from an ALSA device. The name of the device to capture has to be an ALSA card identifier.

An ALSA identifier has the syntax:

 hw:<CARD>[,<DEV>[,<SUBDEV>]]

where the DEV and SUBDEV components are optional.

The three arguments (in order: CARD , DEV , SUBDEV ) specify card number or identifier, device number and subdevice number (-1 means any).

To see the list of cards currently recognized by your system check the files /proc/asound/cards and /proc/asound/devices.

For example to capture with ffmpeg from an ALSA device with card id 0, you may run the command:

 ffmpeg -f alsa -i hw:0 alsaout.wav

For more information see: <http://www.alsa-project.org/alsa-doc/alsa-lib/pcm.html>

bktr
BSD
video input device.

dshow
Windows DirectShow input device.

DirectShow support is enabled when FFmpeg is built with the mingw-w64 project. Currently only audio and video devices are supported.

Multiple devices may be opened as separate inputs, but they may also be opened on the same input, which should improve synchronism between them.

The input name should be in the format:

 <TYPE>=<NAME>[:<TYPE>=<NAME>]

where TYPE can be either audio or video, and NAME is the device’s name.

Options

If no options are specified, the device’s defaults are used. If the device does not support the requested options, it will fail to open.
video_size

Set the video size in the captured video.

framerate

Set the framerate in the captured video.

sample_rate

Set the sample rate (in Hz) of the captured audio.

sample_size

Set the sample size (in bits) of the captured audio.

channels

Set the number of channels in the captured audio.

list_devices

If set to true, print a list of devices and exit.

list_options

If set to true, print a list of selected device’s options and exit.

video_device_number

Set video device number for devices with same name (starts at 0, defaults to 0).

audio_device_number

Set audio device number for devices with same name (starts at 0, defaults to 0).

pixel_format

Select pixel format to be used by DirectShow. This may only be set when the video codec is not set or set to rawvideo.

audio_buffer_size

Set audio device buffer size in milliseconds (which can directly impact latency, depending on the device). Defaults to using the audio device’s default buffer size (typically some multiple of 500ms). Setting this value too low can degrade performance. See also <http://msdn.microsoft.com/en-us/library/windows/desktop/dd377582(v=vs.85).aspx>

Examples

Print the list of DirectShow supported devices and exit:

 $ ffmpeg -list_devices true -f dshow -i dummy

Open video device Camera:

 $ ffmpeg -f dshow -i video="Camera"

Open second video device with name Camera:

 $ ffmpeg -f dshow -video_device_number 1 -i video="Camera"

Open video device Camera and audio device Microphone:

 $ ffmpeg -f dshow -i video="Camera":audio="Microphone"

Print the list of supported options in selected device and exit:

 $ ffmpeg -list_options true -f dshow -i video="Camera"

dv1394
Linux DV 1394 input device.

fbdev
Linux framebuffer input device.

The Linux framebuffer is a graphic hardware-independent abstraction layer to show graphics on a computer monitor, typically on the console. It is accessed through a file device node, usually /dev/fb0.

For more detailed information read the file Documentation/fb/framebuffer.txt included in the Linux source tree.

To record from the framebuffer device /dev/fb0 with ffmpeg:

 ffmpeg -f fbdev -r 10 -i /dev/fb0 out.avi

You can take a single screenshot image with the command:

 ffmpeg -f fbdev -frames:v 1 -r 1 -i /dev/fb0 screenshot.jpeg

See also <http://linux-fbdev.sourceforge.net/>, and fbset(1).

iec61883
FireWire DV/HDV input device using libiec61883.

To enable this input device, you need libiec61883, libraw1394 and libavc1394 installed on your system. Use the configure option "--enable-libiec61883" to compile with the device enabled.

The iec61883 capture device supports capturing from a video device connected via IEEE1394 (FireWire), using libiec61883 and the new Linux FireWire stack (juju). This is the default DV/HDV input method in Linux Kernel 2.6.37 and later, since the old FireWire stack was removed.

Specify the FireWire port to be used as input file, or "auto" to choose the first port connected.

Options
dvtype

Override autodetection of DV/HDV. This should only be used if auto detection does not work, or if usage of a different device type should be prohibited. Treating a DV device as HDV (or vice versa) will not work and result in undefined behavior. The values auto, dv and hdv are supported.

dvbuffer

Set maxiumum size of buffer for incoming data, in frames. For DV, this is an exact value. For HDV, it is not frame exact, since HDV does not have a fixed frame size.

dvguid

Select the capture device by specifying it’s GUID. Capturing will only be performed from the specified device and fails if no device with the given GUID is found. This is useful to select the input if multiple devices are connected at the same time. Look at /sys/bus/firewire/devices to find out the GUIDs.

Examples

Grab and show the input of a FireWire DV/HDV device.

 ffplay -f iec61883 -i auto

Grab and record the input of a FireWire DV/HDV device, using a packet buffer of 100000 packets if the source is HDV.

 ffmpeg -f iec61883 -i auto -hdvbuffer 100000 out.mpg

jack
JACK
input device.

To enable this input device during configuration you need libjack installed on your system.

A JACK input device creates one or more JACK writable clients, one for each audio channel, with name client_name:input_N, where client_name is the name provided by the application, and N is a number which identifies the channel. Each writable client will send the acquired data to the FFmpeg input device.

Once you have created one or more JACK readable clients, you need to connect them to one or more JACK writable clients.

To connect or disconnect JACK clients you can use the jack_connect and jack_disconnect programs, or do it through a graphical interface, for example with qjackctl.

To list the JACK clients and their properties you can invoke the command jack_lsp.

Follows an example which shows how to capture a JACK readable client with ffmpeg.

 # Create a JACK writable client with name "ffmpeg". $ ffmpeg -f jack -i ffmpeg -y out.wav # Start the sample jack_metro readable client. $ jack_metro -b 120 -d 0.2 -f 4000 # List the current JACK clients. $ jack_lsp -c system:capture_1 system:capture_2 system:playback_1 system:playback_2 ffmpeg:input_1 metro:120_bpm # Connect metro to the ffmpeg writable client. $ jack_connect metro:120_bpm ffmpeg:input_1

For more information read: <http://jackaudio.org/>

lavfi
Libavfilter input virtual device.

This input device reads data from the open output pads of a libavfilter filtergraph.

For each filtergraph open output, the input device will create a corresponding stream which is mapped to the generated output. Currently only video data is supported. The filtergraph is specified through the option graph.

Options
graph

Specify the filtergraph to use as input. Each video open output must be labelled by a unique string of the form "outN", where N is a number starting from 0 corresponding to the mapped input stream generated by the device. The first unlabelled output is automatically assigned to the "out0" label, but all the others need to be specified explicitly.

If not specified defaults to the filename specified for the input device.

graph_file

Set the filename of the filtergraph to be read and sent to the other filters. Syntax of the filtergraph is the same as the one specified by the option graph.

Examples

Create a color video stream and play it back with ffplay:

 ffplay -f lavfi -graph "color=c=pink [out0]" dummy

As the previous example, but use filename for specifying the graph description, and omit the "out0" label:

 ffplay -f lavfi color=c=pink

Create three different video test filtered sources and play them:

 ffplay -f lavfi -graph "testsrc [out0]; testsrc,hflip [out1]; testsrc,negate [out2]" test3

Read an audio stream from a file using the amovie source and play it back with ffplay:

 ffplay -f lavfi "amovie=test.wav"

Read an audio stream and a video stream and play it back with ffplay:

 ffplay -f lavfi "movie=test.avi[out0];amovie=test.wav[out1]"

libdc1394
IIDC1394
input device, based on libdc1394 and libraw1394.

openal
The OpenAL input device provides audio capture on all systems with a working OpenAL 1.1 implementation.

To enable this input device during configuration, you need OpenAL headers and libraries installed on your system, and need to configure FFmpeg with "--enable-openal".

OpenAL headers and libraries should be provided as part of your OpenAL implementation, or as an additional download (an SDK ). Depending on your installation you may need to specify additional flags via the "--extra-cflags" and "--extra-ldflags" for allowing the build system to locate the OpenAL headers and libraries.

An incomplete list of OpenAL implementations follows:
Creative

The official Windows implementation, providing hardware acceleration with supported devices and software fallback. See <http://openal.org/>.

OpenAL Soft

Portable, open source ( LGPL ) software implementation. Includes backends for the most common sound APIs on the Windows, Linux, Solaris, and BSD operating systems. See <http://kcat.strangesoft.net/openal.html>.

Apple

OpenAL is part of Core Audio, the official Mac OS X Audio interface. See <http://developer.apple.com/technologies/mac/audio-and-video.html>

This device allows to capture from an audio input device handled through OpenAL.

You need to specify the name of the device to capture in the provided filename. If the empty string is provided, the device will automatically select the default device. You can get the list of the supported devices by using the option list_devices.

Options
channels

Set the number of channels in the captured audio. Only the values 1 (monaural) and 2 (stereo) are currently supported. Defaults to 2.

sample_size

Set the sample size (in bits) of the captured audio. Only the values 8 and 16 are currently supported. Defaults to 16.

sample_rate

Set the sample rate (in Hz) of the captured audio. Defaults to 44.1k.

list_devices

If set to true, print a list of devices and exit. Defaults to false.

Examples

Print the list of OpenAL supported devices and exit:

 $ ffmpeg -list_devices true -f openal -i dummy out.ogg

Capture from the OpenAL device DR-BT101 via PulseAudio:

 $ ffmpeg -f openal -i 'DR-BT101 via PulseAudio' out.ogg

Capture from the default device (note the empty string ’’ as filename):

 $ ffmpeg -f openal -i '' out.ogg

Capture from two devices simultaneously, writing to two different files, within the same ffmpeg command:

 $ ffmpeg -f openal -i 'DR-BT101 via PulseAudio' out1.ogg -f openal -i 'ALSA Default' out2.ogg

Note: not all OpenAL implementations support multiple simultaneous capture - try the latest OpenAL Soft if the above does not work.

oss
Open Sound System input device.

The filename to provide to the input device is the device node representing the OSS input device, and is usually set to /dev/dsp.

For example to grab from /dev/dsp using ffmpeg use the command:

 ffmpeg -f oss -i /dev/dsp /tmp/oss.wav

For more information about OSS see: <http://manuals.opensound.com/usersguide/dsp.html>

pulse
pulseaudio input device.

To enable this input device during configuration you need libpulse-simple installed in your system.

The filename to provide to the input device is a source device or the string "default"

To list the pulse source devices and their properties you can invoke the command pactl list sources.

 ffmpeg -f pulse -i default /tmp/pulse.wav

server AVOption

The syntax is:

 -server <server name>

Connects to a specific server.

name AVOption

The syntax is:

 -name <application name>

Specify the application name pulse will use when showing active clients, by default it is the LIBAVFORMAT_IDENT string

stream_name AVOption

The syntax is:

 -stream_name <stream name>

Specify the stream name pulse will use when showing active streams, by default it is "record"

sample_rate AVOption

The syntax is:

 -sample_rate <samplerate>

Specify the samplerate in Hz, by default 48kHz is used.

channels AVOption

The syntax is:

 -channels <N>

Specify the channels in use, by default 2 (stereo) is set.

frame_size AVOption

The syntax is:

 -frame_size <bytes>

Specify the number of byte per frame, by default it is set to 1024.

fragment_size AVOption

The syntax is:

 -fragment_size <bytes>

Specify the minimal buffering fragment in pulseaudio, it will affect the audio latency. By default it is unset.

sndio
sndio input device.

To enable this input device during configuration you need libsndio installed on your system.

The filename to provide to the input device is the device node representing the sndio input device, and is usually set to /dev/audio0.

For example to grab from /dev/audio0 using ffmpeg use the command:

 ffmpeg -f sndio -i /dev/audio0 /tmp/oss.wav

video4linux2, v4l2
Video4Linux2 input video device.

"v4l2" can be used as alias for "video4linux2".

If FFmpeg is built with v4l-utils support (by using the "--enable-libv4l2" configure option), the device will always rely on libv4l2.

The name of the device to grab is a file device node, usually Linux systems tend to automatically create such nodes when the device (e.g. an USB webcam) is plugged into the system, and has a name of the kind /dev/videoN, where N is a number associated to the device.

Video4Linux2 devices usually support a limited set of widthxheight sizes and framerates. You can check which are supported using -list_formats all for Video4Linux2 devices. Some devices, like TV cards, support one or more standards. It is possible to list all the supported standards using -list_standards all.

The time base for the timestamps is 1 microsecond. Depending on the kernel version and configuration, the timestamps may be derived from the real time clock (origin at the Unix Epoch) or the monotonic clock (origin usually at boot time, unaffected by NTP or manual changes to the clock). The -timestamps abs or -ts abs option can be used to force conversion into the real time clock.

Some usage examples of the video4linux2 device with ffmpeg and ffplay:

Grab and show the input of a video4linux2 device:

 ffplay -f video4linux2 -framerate 30 -video_size hd720 /dev/video0

Grab and record the input of a video4linux2 device, leave the framerate and size as previously set:

 ffmpeg -f video4linux2 -input_format mjpeg -i /dev/video0 out.mpeg

For more information about Video4Linux, check <http://linuxtv.org/>.

Options
standard

Set the standard. Must be the name of a supported standard. To get a list of the supported standards, use the list_standards option.

channel

Set the input channel number. Default to 0.

video_size

Set the video frame size. The argument must be a string in the form WIDTH x HEIGHT or a valid size abbreviation.

pixel_format

Select the pixel format (only valid for raw video input).

input_format

Set the preferred pixel format (for raw video) or a codec name. This option allows to select the input format, when several are available.

framerate

Set the preferred video framerate.

list_formats

List available formats (supported pixel formats, codecs, and frame sizes) and exit.

Available values are:

all

Show all available (compressed and non-compressed) formats.

raw

Show only raw video (non-compressed) formats.

compressed

Show only compressed formats.

list_standards

List supported standards and exit.

Available values are:

all

Show all supported standards.

timestamps, ts

Set type of timestamps for grabbed frames.

Available values are:
default

Use timestamps from the kernel.

abs

Use absolute timestamps (wall clock).

mono2abs

Force conversion from monotonic to absolute timestamps.

Default value is "default".

vfwcap
VfW (Video for Windows) capture input device.

The filename passed as input is the capture driver number, ranging from 0 to 9. You may use "list" as filename to print a list of drivers. Any other filename will be interpreted as device number 0.

x11grab
X11 video input device.

This device allows one to capture a region of an X11 display.

The filename passed as input has the syntax:

 [<hostname>]:<display_number>.<screen_number>[+<x_offset>,<y_offset>]

hostname:display_number.screen_number specifies the X11 display name of the screen to grab from. hostname can be omitted, and defaults to "localhost". The environment variable DISPLAY contains the default display name.

x_offset and y_offset specify the offsets of the grabbed area with respect to the top-left border of the X11 screen. They default to 0.

Check the X11 documentation (e.g. man X) for more detailed information.

Use the dpyinfo program for getting basic information about the properties of your X11 display (e.g. grep for "name" or "dimensions").

For example to grab from :0.0 using ffmpeg:

 ffmpeg -f x11grab -r 25 -s cif -i :0.0 out.mpg

Grab at position "10,20":

 ffmpeg -f x11grab -r 25 -s cif -i :0.0+10,20 out.mpg

Options
draw_mouse

Specify whether to draw the mouse pointer. A value of 0 specify not to draw the pointer. Default value is 1.

follow_mouse

Make the grabbed area follow the mouse. The argument can be "centered" or a number of pixels PIXELS .

When it is specified with "centered", the grabbing region follows the mouse pointer and keeps the pointer at the center of region; otherwise, the region follows only when the mouse pointer reaches within PIXELS (greater than zero) to the edge of region.

For example:

 ffmpeg -f x11grab -follow_mouse centered -r 25 -s cif -i :0.0 out.mpg

To follow only when the mouse pointer reaches within 100 pixels to edge:

 ffmpeg -f x11grab -follow_mouse 100 -r 25 -s cif -i :0.0 out.mpg

framerate

Set the grabbing frame rate. Default value is "ntsc", corresponding to a framerate of "30000/1001".

show_region

Show grabbed region on screen.

If show_region is specified with 1, then the grabbing region will be indicated on screen. With this option, it is easy to know what is being grabbed if only a portion of the screen is grabbed.

For example:

 ffmpeg -f x11grab -show_region 1 -r 25 -s cif -i :0.0+10,20 out.mpg

With follow_mouse:

 ffmpeg -f x11grab -follow_mouse centered -show_region 1 -r 25 -s cif -i :0.0 out.mpg

video_size

Set the video frame size. Default value is "vga".

Output devices are configured elements in FFmpeg which allow to write multimedia data to an output device attached to your system.

When you configure your FFmpeg build, all the supported output devices are enabled by default. You can list all available ones using the configure option "--list-outdevs".

You can disable all the output devices using the configure option "--disable-outdevs", and selectively enable an output device using the option "--enable-outdev= OUTDEV ", or you can disable a particular input device using the option "--disable-outdev= OUTDEV ".

The option "-formats" of the ffmpeg.1.gz ffmpeg-bitstream-filters.1.gz ffmpeg-codecs.1.gz ffmpeg-devices.1.gz ffmpeg-filters.1.gz ffmpeg-formats.1.gz ffmpeg-protocols.1.gz ffmpeg-resampler.1.gz ffmpeg-scaler.1.gz ffmpeg-utils.1.gz ffmulticonverter.1.gz ffplay.1.gz ffprobe.1.gz ffserver.1.gz tools will display the list of enabled output devices (amongst the muxers).

A description of the currently available output devices follows.

alsa
ALSA
(Advanced Linux Sound Architecture) output device.

caca
CACA
output device.

This output devices allows to show a video stream in CACA window. Only one CACA window is allowed per application, so you can have only one instance of this output device in an application.

To enable this output device you need to configure FFmpeg with "--enable-libcaca". libcaca is a graphics library that outputs text instead of pixels.

For more information about libcaca, check: <http://caca.zoy.org/wiki/libcaca>

Options
window_title

Set the CACA window title, if not specified default to the filename specified for the output device.

window_size

Set the CACA window size, can be a string of the form widthxheight or a video size abbreviation. If not specified it defaults to the size of the input video.

driver

Set display driver.

algorithm

Set dithering algorithm. Dithering is necessary because the picture being rendered has usually far more colours than the available palette. The accepted values are listed with "-list_dither algorithms".

antialias

Set antialias method. Antialiasing smoothens the rendered image and avoids the commonly seen staircase effect. The accepted values are listed with "-list_dither antialiases".

charset

Set which characters are going to be used when rendering text. The accepted values are listed with "-list_dither charsets".

color

Set color to be used when rendering text. The accepted values are listed with "-list_dither colors".

list_drivers

If set to true, print a list of available drivers and exit.

list_dither

List available dither options related to the argument. The argument must be one of "algorithms", "antialiases", "charsets", "colors".

Examples

The following command shows the ffmpeg output is an CACA window, forcing its size to 80x25:

 ffmpeg -i INPUT -vcodec rawvideo -pix_fmt rgb24 -window_size 80x25 -f caca -

Show the list of available drivers and exit:

 ffmpeg -i INPUT -pix_fmt rgb24 -f caca -list_drivers true -

Show the list of available dither colors and exit:

 ffmpeg -i INPUT -pix_fmt rgb24 -f caca -list_dither colors -

oss
OSS
(Open Sound System) output device.

sdl
SDL
(Simple DirectMedia Layer) output device.

This output devices allows to show a video stream in an SDL window. Only one SDL window is allowed per application, so you can have only one instance of this output device in an application.

To enable this output device you need libsdl installed on your system when configuring your build.

For more information about SDL, check: <http://www.libsdl.org/>

Options
window_title

Set the SDL window title, if not specified default to the filename specified for the output device.

icon_title

Set the name of the iconified SDL window, if not specified it is set to the same value of window_title.

window_size

Set the SDL window size, can be a string of the form widthxheight or a video size abbreviation. If not specified it defaults to the size of the input video, downscaled according to the aspect ratio.

Examples

The following command shows the ffmpeg output is an SDL window, forcing its size to the qcif format:

 ffmpeg -i INPUT -vcodec rawvideo -pix_fmt yuv420p -window_size qcif -f sdl "SDL output"

sndio
sndio audio output device.

ffmpeg(1), ffplay(1), ffprobe(1), ffserver(1), libavdevice(3)

The FFmpeg developers.

For details about the authorship, see the Git history of the project (git://source.ffmpeg.org/ffmpeg), e.g. by typing the command git log in the FFmpeg source directory, or browsing the online repository at <http://source.ffmpeg.org>.

Maintainers for the specific components are listed in the file MAINTAINERS in the source code tree.

play store download app store download
Imprint
Sonnenallee 29, 12047 Berlin, Germany
e-mail: sschubert89@gmail.com

Privacy policy
Successfully copied